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by

Erhan (;L\'LAR

Abstract

Consider a Brownian motion with a downward drift of rate a. Its maximum over all time

has the exponential distribution with parameter 2a. Our aim is to study this maximum as a sto-

chastic process indexed by a. That process is related to the convex majorant of the standard

Brownian motion and, through the latter, to a Poisson random measure. This connection is

exploited to obtain various distributional results. The results are of interest in queueing theory.
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considered by NEWELL [4] and by COFFMAN, KADOTA, and SHEPP (2], the latter viewing \3: y
the mode! as that of storage allocation in computer memory. '3
[ ]
Let O, (n) be the random variable that is 0 or 1 according as the stall n is empty or occupied ] :,
{305
: : . . W
at time ¢. The random vector Q; =(Q,(1), Q,(2), ...) is the state of the system at time ¢. The pro- \",}
, B
cess (3, O:(n); ¢ 2 0} is the queue size process in an M/M/e~ system; it is regenerative, and Ois oy
a regeneration state for it. It follows that the vector (0, 0, ...) is a regeneration state for :;:a*
. ) “|
{Q,: t 20} and that the latter has an equilibrium distribution. Let Q be a razdom vector (of ':;:::
?t's't
zeros and ones) whose law is that equilibrium distribution. N
L
The distribution of 3, Q (n) is Poisson with mean A. The distribution of 3" O (n) is the "g
equilibrium distribution of the queue size process in the M/M/m/m system with arrival rate A and g %
SO0
service rate 1; thus, that distribution is the conditional distribution of ¥, Q(n) given that u‘
¥ Q(n)<m. Other than these facts and a few conclusions that can be drawn from them by ele- :'\::; t
mentary probabilistic considerations, there is not much known about the distribution of 0. rh ’
00
Fora >0, let 214 Y;(a.r) be the number of empty stalls at time 7 among those labeled '
withn <A —a2?* ALDOUS [1] has shown that the process {Ya(a .t); a >0, t 20} converges ['F A
L K‘h_\ A
weakly, as A — o<, 10 a process {Y(a,t); a >0, t 20}, which he identified and showed that, in ..ﬁ
h
the limit as ¢+ — oo, converges weakly to the process '
-~
5 A
Y(a) =r§1236x(\28,—as), a>0,
Al
where B is the standard Brownian motion. He calls {Y (a); a > 0} the exponential process, after
the well-known fact that Y (a ) has the exponential distribution with mean 1/a for eacha. 3
{)
Our main contribution is to supply the probability law of Y in simpler terms. For this pur- $
N
pose we choose to work with K J
A
A
}. »
(1.1 Z, = -Ly"2a) = max (B, -ar) >0 )
. a—-J—z-(a)—nﬁgg‘ (—ar), a ' (
and let D, be the last time ¢ at which B, ~ at touches its zenith Z,, that is, ":"':
13.0%,¢
v
B
N (]
] '!.
at
‘1‘;\1
b
)
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(1.2) D, = sup{t: B,—at=2,}, a>0. :2.

It tums out that D, is the lefi-derivative of Z at a and, thus, is related to the density of empty
]
stalls in the parking lot, in equilibrium, around A — a A% for large A. .1:"

The next section contains a few simple geometric observations. First we relate the process ,:.

(D, Z) 10 the convex majorant of the Brownian motion B. Using the hard results of GROENE-
BOOM [3] and PITMAN ([5] about the latter, we are able to express D and Z ih terms of a Pois- f
son random measure on (0,0¢) X (0,ec). It follows, in particular, that D has non-stationary o

independent increments, and that (L ,Z) is a non-homogeneous Markov process. b

The process a — Z, is continuous, concave, and decreases from its limit +eo at 2 =0+ to its t’..,
U

limit 0 at . Therefore, its "hitting time" process ¥

(1.3) A, = inf{a:Z,<z}, >0, "y

is the functional inverse of Z. It tumns out that the process A has the same probability law as Z. ol

This observation is also put in the next section. 1 4

The last section is devoted to computational issues. We compute the joint distribution of s

D, and Z, and also the transition function of the Markov process (D ,Z). A
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2. ZENITH PROCESS n
"

The problem with the definition, (1.1) of Z; is that it suggesis re-drawing the path

t — B, —at if we wish to vary a. The following observation circumvents the problem: b

2.1 Z, = inf{x>0: x+at>B, forall t20). ;.:,

Obviously, this is a re-wording of (1.1), but the mental picture it suggests is much more con- :.:o:

venient for manipulating a: the linc ¢ = Z, + ar is the infimum of all lincs of slope a that ncver ,"‘%

touch B. This picture is drawn in Figure 1 below. o

= S

g g

d .- - - -

~
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FIGURE 1
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Let C denote the convex majorant of B, that is, the minimal convex path that dominates B
(sec Figure 1 again). Note that Z, and D, are determined by C: the linc t = Z; +at is the
infimum of all lines of slopc a that never touch C, and D, is the Jast time at which that line
touches C. In fact, for fixed @ > 0, D, is almost surely the only time ¢ with G, =Z, +at.

It is known (see GROENEBOOM (3] for instance) that C is continuous and piecewise
linear. The countable collection of its vertices has, almost surely, only one accumulation point,
namely (0,0). Fix an g > 0; note that (D,, Z, +aD,) is a vertex; let T, Ty,... be the lengths of
successive intervals of linearity going to the right from D,; let T_;, T _,... be those to the lefl;
and let S; be the slope of C over the interval whose length is denoted by 7;. The following major
result was obtained by GROENEBOOM [3]; a simpler proof using the excursions of B may be

found in PITMAN [5].

(2.2) THEOREM. The pairs (5, T;), i € Z, form a Poisson random measure N on

{0,%°) x (0,<) whose mean measure is

(2.3) v(ds,dr) = % Ys(dt) .

where ¥, is the gamma distribution with shapc index 1/2 and scale parameter s2/2 (the

corresponding mean is 1/s52),

The probability law of a Poisson random measure is determined by its mean measure.
Thus, the following specifies the probability law of (D, Z). For computational purposes, the

representations given here for D, and Z, are the key starting points.

(2.4) PROPOSITION. Foreacha >0,

2.5) D, = ’l N(ds,dt)t,
[a 1007%(0,e2)

(2.6) Z, = ID, ds = ,l«;”) N(ds,dt) (s-a)t .
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The process D has non-stationary independent increments. The process (D, Z) is a temporally N

non-homogeneous Markov process. .

PROOF. First note that (see Figure 1) e
D, = 3 T liae)(Si), P

Z, +aD, = B(D,) = ; S T; 1ia ) (S . to;"\

Expressed in terms of the Poisson random measure N, these become (2.5) and (2.6). The ;emain-
ing statements are immediate from the independence of the restrictions of N to disjoint Borel Ay
sets.

Figure 2 below shows the qualitative features of D: it is piecewise constant, lefi- g
continuous, and decreases from its limit +eo at @ = O+ to its limit O at +o-. It follows from (2.6) &».
that Z is continuous, concave, piecewise linear, and decreases from its limit 4+ at @ =0+ to 0 at oy

» 00
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It was noted by ALDOUS (1] that, for each ¢ > 0, the process (¢~ [7.., ¢Zc.)a>o has the

same probability law as (D,Z). This can be seen from the preceding characterization:
a = ¢2D,, jumps at the points S;/c by the amounts ¢ 27;; the pairs (S;/c, ¢ 2T;) form a Poisson
random measure that has the same mean measure as N; hence, a — ¢ 2D, has the same law as

D.

We end this section with an observation on the process

Q.7 A, = inffa: 2,<2)}, z2>0.

Obviously, z = A; is the functional inverse of the one-to-one mapping a — Z, of (0,e) onto
(0,%0). It follows that the qualitative picture of A is exactly that of Z. In particular, A is piece-

wise linear and

; - . A — A 1
- — 2+€ z =
(o.S) Dz = lgfla _—_———£ m . z2>0.

The process D is piecewise constant, right-continuous, decreasing.

(2.9) PROPOSITION. The process (D, A) has the same probability law as the process (D, Z).
In particular, the collection {Z(S;); i € £} has the same law as the collection {3,; i € Zj; they

form Poisson random measures on (0,e<) with mean measure ds /s .

PROOF. We put (2.7) and (2.1) together and manipulate:

A; inf{a: inf{x : x+ar >B, forall t} < z}

inf{fa: z +a > B, forall:)

= inf{a: a +z2u > uB,y, foraluj.

This shows that A is the zenith process associated with the process {uB,, : u 20J, just as Z is

vt et LY . D : - -y Y A Ny %% R 2% )
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s
the zenith process associated with B. Since (uB ) is a standard Brownian mot.on like B, it fol- N
\

lows that A has the same probability law as Z. This proves the first statement, since D is th: s
o 1

derivative of —A and D is the derivative of ~Z.
The points S; are the jump locations of D, and the points Z (S;) are those of D. This proves .3,

the second statement. bt
W) N

g*;.
) MMM&W&%&M&&&%&




-9 - L &
e
o
3. ENTRANCE LAW AND TRANSITION FUNCTION :‘,
Ly
[
We derive the distribution of the random variable (D,, Z,) and the transition function of the ::
process (D ,Z). The computations rest on the characterization given by Proposition (2.4) and on hohst
2
the well-known formula for the Laplace functional of the Poisson random measure N with mean ¥
measure v: o
o
"
g 3
(3.1 Eexp — [ Ndx)f(x) = exp - [ v(dx) (1-e”®) >
oyl
for every positive Borel function f on (0,e0) X (0,). 3:
p
X
(3.2) PROPOSITION. Foreacha > 0, 5%
oA
, o
(3.3) E exp (-pD, —qZ;) = q4_ , p20,q20; ) _
a+q+VYal+2p ..:0‘1
"
' ]
” !
(.4) P(Dac di, Zy € dz) =drdz 202 €L7% £>0,2>0. &
N2me3 ;
o
In particular, Py,
-
(i
(e WY
] a2 i
(3.5) P{Z, € dz})=dz2ae™*, P(D, e dt}=dt Jdu e ,

N
:]

=

w
4 i"J.

PROOF. Fixa >0, p 20, ¢ 20. Inview of (2.5) and (2.6),

“a 8 '-l LI
L

v’
4

D, + gZ, = N@dsd t + —-aj).
pD, + qZ, [a.n)L(O,oo) (ds dt) (pt +q(s —a)t)

Using (3.1) and the form of the mean measure v given by (2.3), the Laplace transform (3.3) is

obtained via elementary calculus. To invert the Laplace transform, first write it as

AR A A

ig
[4

7 e gl
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and then recall that e, r 20, is the Laplace transform of H,, the first time a standard

Brownian motion hits the level z, that is,

oo

 a -2
eVt o ([ di - €2 pwn
V23

The rest is trivial.

(3.6) REMARK. Although (3.4) is explicit and shades of exponential and stable distributions
can be felt, it does not seem well-suited for probabilistic thinking. The following representation

is better, especially for Monte-Carlo methods. Fora > 0,
a’D, = X (1-\UY, az, = XU (1-VU),

where X and U are independent, U has the uniform distribution on (0,1), and X has the gamma

distribution with shape index 3/2 and scale parameter 1/2.

The following specifies the joint Laplace transform of any number of increments of Z (upon

taking f =p 14, +.+p, 1, withA,, ..., A, disjoint intervals).

(3.7) PROPOSITION. For any positive Borel function f on (0,c0),

E exp (Oj)f(a) dz, = exp—t[ds (-‘-—_\th;)
s Se+2f (s

where f (s) is the Lebesgue integral of f over (0,5).
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PROOF. Note that

[f@yaz, = -] f(6)D,da==[ N(ds.at) fis) .

and use (3.1).

As mentioned in Proposition (2.4), the process D has non-stationary independent incre-

ments, and the process (D ,Z ) is a non-homogeneous parameter Markov process. Let
(3.8) Pu(tx; du,dv) = P(Dye du,Zyedy | Dy=t,2, =x)

for 0O<b <a, 0<t <u, 0<x <y (in our zeal to deal with positive random variables, we

choose to work with the parameters in decreasing order). In view of (2.5) and (2.6),

(3.9 Pu(tox:idu,dv) = Pt+Uedu,x+(@~b)+Y ed),

where

(3.10) U = ,1 Nds,d) , Y= )l N(ds,dt) (s =b)t.
(b & %(0,<) 6.8 Yx(0,)

The joint Laplace transform of U and Y can be obtained from (3.1) as in the first step of the

proof of (3.2):

.a+q +\/a"-’+2p +2(a-b)g
b+q+Vp2+2p

"

(3.11) E ePU-¢f

o

1. 2b
a2 b+q+Vp2+2p

+a—b,1 2b 1 I (c +q)dc

a 2 b+q+\[b2+2p a-b ‘[ V(c +q)2+2p - 2bq

Inverting this is tedious but manageable. It yields the following for the distribution ¢¢ of the pair

_qz'

NG (I
2TL I,

2, RIS
il Y
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312w = Lo+ -8y (v Fax BaTher, o
¥
. . ‘.(
where the asterisque denotes convolution, &, is the Dirac measure at x, A, is the distribution of '.
(Ds.2,) specified by (3.4), and Yy
-
0y
(3.13) Woo(dr, dy)= €2 dt & (&), >0,y >0 2
o Voms X ’ ' |
o
)
Putting the distribution « of (U, Y) into (3.9) yields an explicit expression for the transition .oﬁ

function P,;. As a by-product, we have the joint distribution of

I

U=Dy-D,,Y =2y, -2, -b-a)D,. "
4
Noting that D, is independent of (U.Y ), one can obtain the distribution of (D, — D, , Z, — Z,) :.:
among other things. | o
However, it is clear that such results are of limited use because of their complexity. : f
Overall, the computational complexity is caused by a confluence of two incompatible operations, :"g
addition and multiplication: look at the form (2.3) of the mean measure v; the Haar measure ds /s ‘
indicates that the natural group operation on the jump points S; is multiplication, whereas the ::‘ )
jump amounts T; are additive. ;‘E
Of course, it is easy to transform the Poisson random measure N into one with a nicer inten- M,
sity: define f to be the mapping (s,t) = (log s, 52); then the image of N under f is the Pois- .?::;
son random measure N = Nf =1 on (—ee,e¢) X (0,%¢) with mean measure du Ydv) where v is the ::
gamma distribution with shape and scale parameters equal to 1/2. But, then, expressions for D, =
and Z, in terms of N have to undo the transformation, and there is no gain at the end. Using i
p =log a to index the processes involved (and working with Zp =Z (e*)) does not help either. ;

LS. NI N

h ; - o] 6 ¥ - - 1 ¥
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On the other hand. it is easv to describe the construction of the path of (D ,Z) over the intes-
val (0.a). This may be useful for Montc-Carlo purposes.
First, we observe that the conditional distribution of S;4; given (S;, S;-1....) is the uniform

distribution on (0,S;). Thus, to construct (D ,Z) over (0,a}, we start with U and X described in

Remark (3.6) and generate D, and Z,. Then, we let Uy, Us,... be ii.d. uniform on (0,1), let

X 1.X 3.... be i.i.d. Gaussian with mean O and variance 1, and set

(3.14) S,=a. S,=al,U; - U, T,-=(-’S{;)‘~’. i=12..
With these, define
(.15) D(S,)=D,, DS)=DE,.)+Ti. i21,

(3.16) ZS)=2Z,, ZESH=ZESi-D+(Sim=8) DSi-p, 121,

Then, (D), ., is the lefi-coninuous piecewise constant path whose value at §; is D (S;), and
(Zb), ., 15 the continuous piecewise linear path whose value at §; is Z(S;). Incidentally,

(), S:. D(S)), (5i, D(S)), Z(S;)) are all Markov chains.
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